Talk on MLLM

"Multimodal Large Language Model"

Multimodal Multidisciplinary Multi-perspective

Slack   Twitter Youtube Bilibili

Next Speakers

Interactive AI Systems Specialized in Social Influence

Dr. Weiyan Shi  | Stanford University NLP Group & Northeastern University  

7PM (GMT-7) @Stanford | 3AM (GMT+1) @London| Date (TBD) 


Dr. Weiyan Shi is an incoming Assistant Professor at Northeastern University starting in 2024. She will spend 2023-2024 as a postdoc at Stanford NLP. Her research interests are in Natural Language Processing (NLP), especially in social influence dialogue systems such as persuasion, negotiation, and recommendation. She has also worked on privacy-preserving NLP applications. She is recognized as a Rising Star in Machine Learning by the University of Maryland. Her work on personalized persuasive dialogue systems was nominated for ACL 2019 best paper. She was also a core team member behind a Science publication on the first negotiation AI agent, Cicero, that achieves a human level in the game of Diplomacy. This work has been featured in The New York Times, The Washington Post, MIT Technology Review, Forbes, and other major media outlets.

Dr. Weiyan Shi is looking for Master/PhD/Internship students and  to join her lab - CHATS Lab (Conversation, Human-AI Tech, Security). More infromation is here


AI research has so far focused on modeling common human skills, such as building systems to see, read, or talk. As these systems gradually achieve a human level in standard benchmarks, it is increasingly important to develop next-generation interactive AI systems with more advanced human skills, to function in realistic and critical applications such as providing personalized emotional support. In this talk, I will cover (1) how to build such expert-like AI systems specialized in social influence that can persuade, negotiate, and cooperate with other humans during conversations. (2) I will also discuss how humans perceive such specialized AI systems. This study validates the necessity of Autobot Law and proposes guidance to regulate such systems. (3) As these systems become more powerful, they are also more prone to leak users' private information. So I will describe our proposed new privacy notion, Selective Differential Privacy, and an algorithm to train privacy-preserving models with high utilities. Finally, I will conclude with my long-term vision to build a natural interface between human intelligence and machine intelligence via dialogues, from a multi-angel approach that combines Artificial Intelligence, Human-Computer Interaction, and social sciences, to develop expert AI systems for everyone.

Obstinate robustness for language models

Yimu Wang  | University of Waterloo

 Date (TBD) | Meeting Link (coming soon)

Abstract: We study the problem of generating obstinate (over-stability) adversarial examples by word substitution in NLP, where input text is meaningfully changed but the model's prediction does not, even though it should. Previous word substitution approaches have predominantly focused on manually designed antonym-based strategies for generating obstinate adversarial examples, which hinders its application as these strategies can only find a subset of obstinate adversarial examples and require human efforts. To address this issue, in this paper, we introduce a novel word substitution method named GradObstinate, a gradient-based approach that automatically generates obstinate adversarial examples without any constraints on the search space or the need for manual design principles. To empirically evaluate the efficacy of GradObstinate, we conduct comprehensive experiments on five representative models (Electra, ALBERT, Roberta, DistillBERT, and CLIP) finetuned on four NLP benchmarks (SST-2, MRPC, SNLI, and SQuAD) and a language-grounding benchmark (MSCOCO). Extensive experiments show that our proposed GradObstinate generates more powerful obstinate adversarial examples, exhibiting a higher attack success rate compared to antonym-based methods. Furthermore, to show the transferability of obstinate word substitutions found by GradObstinate, we replace the words in four representative NLP benchmarks with their obstinate substitutions. Notably, obstinate substitutions exhibit a high success rate when transferred to other models in black-box settings, including even GPT-3 and ChatGPT.

We welcome you to discover more about the robustness of NLP and language-grounding tasks.

Suspicion-Agent: Playing Imperfect Information Games with Theory of Mind Aware GPT-4

Dr. Jiaxian Guo | The University of Tokyo

Date (TBD) | Meeting Link (coming soon)

Abstract: Unlike perfect information games, where all elements are known to every player, imperfect information games emulate the real-world complexities of decision-making under uncertain or incomplete information. GPT-4, the recent breakthrough in large language models (LLMs) trained on massive passive data, is notable for its knowledge retrieval and reasoning abilities. This paper delves into the applicability of GPT-4's learned knowledge for imperfect information games. To achieve this, we introduce Suspicion-Agent, an innovative agent that leverages GPT-4's capabilities for performing in imperfect information games. With proper prompt engineering to achieve different functions, Suspicion-Agent based on GPT-4 demonstrates remarkable adaptability across a range of imperfect information card games. Importantly, GPT-4 displays a strong high-order theory of mind (ToM) capacity, meaning it can understand others and intentionally impact others' behavior. Leveraging this, we design a planning strategy that enables GPT-4 to competently play against different opponents, adapting its gameplay style as needed, while requiring only the game rules and descriptions of observations as input. In the experiments, we qualitatively showcase the capabilities of Suspicion-Agent across three different imperfect information games and then quantitatively evaluate it in Leduc Hold'em. The results show that Suspicion-Agent can potentially outperform traditional algorithms designed for imperfect information games, without any specialized training or examples. In order to encourage and foster deeper insights within the community, we make our game-related data publicly available.

GIFT: Graph-Induced Fine-Tuning for Multi-Party Conversation Understanding

Dr. Jia-Chen Gu  | University of California, Los Angeles 

 Date (TBD) | Meeting Link (coming soon)

Large Models for Time Series and Spatio-Temporal Data

Ming Jin  | Monash University

 Date (TBD) | Meeting Link (coming soon)

Abstract: Temporal data, notably time series and spatio-temporal data, are prevalent in real-world applications. They capture dynamic system measurements and are produced in vast quantities by both physical and virtual sensors. Analyzing these data types is vital to harnessing the rich information they encompass and thus benefits a wide range of downstream tasks. Recent advances in large language and other foundational models have spurred increased use of these models in time series and spatio-temporal data mining. Such methodologies not only enable enhanced pattern recognition and reasoning across diverse domains but also lay the groundwork for artificial general intelligence capable of comprehending and processing common temporal data. In this survey, we offer a comprehensive and up-to-date review of large models tailored (or adapted) for time series and spatio-temporal data, spanning four key facets: data types, model categories, model scopes, and application areas/tasks. Our objective is to equip practitioners with the knowledge to develop applications and further research in this underexplored domain. We primarily categorize the existing literature into two major clusters: large models for time series analysis (LM4TS) and spatio-temporal data mining (LM4STD). On this basis, we further classify research based on model scopes (i.e., general vs. domain-specific) and application areas/tasks. We also provide a comprehensive collection of pertinent resources, including datasets, model assets, and useful tools, categorized by mainstream applications. This survey coalesces the latest strides in large model-centric research on time series and spatio-temporal data, underscoring the solid foundations, current advances, practical applications, abundant resources, and future research opportunities.

GraphGPT: Graph Instruction Tuning for Large Language Models

Jiabin Tang |Data Intelligence Lab, The University of Hong Kong

 Date (TBD) | Meeting Link (coming soon)


Jiabin Tang is a first-year Ph.D. student at Musketeers Foundation Institute of Data Science, The University of Hong Kong (HKU), supervised by Dr. Chao Huang. His previous research interests mainly lie in Graph Neural Networks (GNN), Spatial-Temporal data mining and Urban Computing. Recently, he divide into how to combine Large Language Models (LLMs) with Graph Learning and other data mining applications (e.g., recommendation systems). 

Abstract: Graph Neural Networks (GNNs) have advanced graph structure understanding via recursive information exchange and aggregation among graph nodes. To improve model robustness, self-supervised learning (SSL) has emerged as a promising approach for data augmentation. However, existing methods for generating pre-trained graph embeddings often rely on fine-tuning with specific downstream task labels, which limits their usability in scenarios where labeled data is scarce or unavailable. To address this, our research focuses on advancing the generalization capabilities of graph models in challenging zero-shot learning scenarios. Inspired by the success of large language models (LLMs), we aim to develop a graph-oriented LLM that can achieve high generalization across diverse downstream datasets and tasks, even without any information available from the downstream graph data. In this work, we present the **GraphGPT** framework that aligns LLMs with graph structural knowledge with a graph instruction tuning paradigm. Our framework incorporates a text-graph grounding component to establish a connection between textual information and graph structures. Additionally, we propose a dual-stage instruction tuning paradigm, accompanied by a lightweight graph-text alignment projector. This paradigm explores self-supervised graph structural signals and task-specific graph instructions, to guide LLMs in understanding complex graph structures and improving their adaptability across different downstream tasks. Our framework is evaluated on supervised and zero-shot graph learning tasks, demonstrating superior generalization and outperforming state-of-the-art baselines.

In-context learning of large language model 

Ruiqi Zhang |University of California, Berkeley

 Date (TBD) | Meeting Link (coming soon)


Hao Zhu|Carnegie Mellon University

 Date (TBD) | Meeting Link (coming soon)

Large Language Models as Commonsense Knowledge for Large-Scale Task Planning

Zirui Zhao|National University of Singapore

 Date (TBD) | Meeting Link (coming soon)

Abstract: Large-scale task planning is a major challenge. Recent work exploits large language models (LLMs) directly as a policy and shows surprisingly interesting results. This paper shows that LLMs provide a commonsense model of the world in addition to a policy that acts on it. The world model and the policy can be combined in a search algorithm, such as Monte Carlo Tree Search (MCTS), to scale up task planning. In our new LLM-MCTS algorithm, the LLM-induced world model provides a commonsense prior belief for MCTS to achieve effective reasoning; the LLM-induced policy acts as a heuristic to guide the search, vastly improving search efficiency. Experiments show that LLM-MCTS outperforms both MCTS alone and policies induced by LLMs (GPT2 and GPT3.5) by a wide margin, for complex, novel tasks. Further experiments and analyses on multiple tasks -- multiplication, travel planning, object rearrangement -- suggest minimum description length (MDL) as a general guiding principle: if the description length of the world model is substantially smaller than that of the policy, using LLM as a world model for model-based planning is likely better than using LLM solely as a policy.

Join us to be next speaker